Abstract

Four Cu–Zn brass alloys with different stoichiometries and compositions have been analyzed by laser-induced breakdown spectroscopy (LIBS) using nanosecond laser pulses. The intensities of 15 emission lines of copper, zinc, lead, carbon, and aluminum (as well as the environmental contaminants sodium and calcium) were normalized and analyzed with a discriminant function analysis (DFA) to rapidly categorize the samples by alloy. The alloys were tested sequentially in two different noble gases (argon and helium) to enhance discrimination between them. When emission intensities from samples tested sequentially in both gases were combined to form a single 30-spectral line “fingerprint” of the alloy, an overall 100% correct identification was achieved. This was a modest improvement over using emission intensities acquired in argon gas alone. A similar study was performed to demonstrate an enhanced discrimination between two strains of Escherichia coli (a Gram-negative bacterium) and a Gram-positive bacterium. When emission intensities from bacteria sequentially ablated in two different gas environments were combined, the DFA achieved a 100% categorization accuracy. This result showed the benefit of sequentially testing highly similar samples in two different ambient gases to enhance discrimination between the samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.