Abstract

The use of wearable sensors, such as inertial measurement units (IMUs), and machine learning for human intent recognition in health-related areas has grown considerably. However, there is limited research exploring how IMU quantity and placement affect human movement intent prediction (HMIP) at the joint level. The objective of this study was to analyze various combinations of IMU input signals to maximize the machine learning prediction accuracy for multiple simple movements. We trained a Random Forest algorithm to predict future joint angles across these movements using various sensor features. We hypothesized that joint angle prediction accuracy would increase with the addition of IMUs attached to adjacent body segments and that non-adjacent IMUs would not increase the prediction accuracy. The results indicated that the addition of adjacent IMUs to current joint angle inputs did not significantly increase the prediction accuracy (RMSE of 1.92° vs. 3.32° at the ankle, 8.78° vs. 12.54° at the knee, and 5.48° vs. 9.67° at the hip). Additionally, including non-adjacent IMUs did not increase the prediction accuracy (RMSE of 5.35° vs. 5.55° at the ankle, 20.29° vs. 20.71° at the knee, and 14.86° vs. 13.55° at the hip). These results demonstrated how future joint angle prediction during simple movements did not improve with the addition of IMUs alongside current joint angle inputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.