Abstract
In our previous paper, we have shown that a gas disk in the nuclear region of a barred galaxy which contains a central supermassive black hole (SMBH) rapidly evolves into a nuclear gas ring by the effect of an additional inner Lindblad resonance caused by the SMBH. In this paper, we investigate the fate of the gas ring, involving self-gravity of gas, using two-dimensional hydrodynamical simulations. We find that the gas ring becomes gravitationally unstable for a gas surface density of gas above a critical value, and fragments into several gas clumps. Some denser clumps increase their mass via the accretion of the surrounding gas and collisions with other clumps, and finally a very massive gas clump (10^7 M_sun) is formed. Due to the torque from the most massive clump, a part of the gas in the ring loses its angular momentum and falls into the galactic center. As a result, a nuclear gas disk (50 pc) is formed around the SMBH. The accretion rate for $R<50$ pc attains about 1 M_sun/yr for 3.5*10^7 yr. At the final phase of the bar-driven fueling, self-gravity is crucial for the angular momentum transfer of the gas. This is a new mechanism for gas fueling to the vicinity of the SMBH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.