Abstract
The aim of this study was to investigate the effect of three selective serotonin reuptake inhibitors (SSRIs), fluoxetine, fluvoxamine and sertraline, on the pharmacokinetics and metabolism of perazine in a steady state in rats. Perazine (10 mg kg(-1), i.p.) was administered twice daily for two weeks, alone or jointly with one of the SSRIs. Concentrations of perazine and its two main metabolites (N-desmethylperazine and 5-sulfoxide) in the plasma and brain were measured 30 min and 6 and 12 h after the last dose of the drugs. Of the investigated SSRIs, fluoxetine and fluvoxamine significantly increased plasma and brain concentrations of perazine (up to 900% and 760% of the control value, respectively), their effect being most pronounced after 30 min and 6 h. Moreover, simultaneous increases in perazine metabolites concentrations and in the perazine/metabolite concentration ratios were observed. Sertraline elevated plasma and brain concentrations of perazine after 30 min. In-vitro studies with liver microsomes of rats treated chronically with perazine, SSRIs ortheir combinations showed decreased concentrations of cytochrome P-450 after perazine and a combination of perazine and fluvoxamine (vs control), and increased concentration after a combination of perazine and fluoxetine (vs perazine-treated group). Prolonged treatment with perazine did not significantly change the rate of its own metabolism. Chronic administration of fluoxetine or sertraline, alone or in a combination with perazine, accelerated perazine N-demethylation (vs control or perazine group, respectively). Fluvoxamine had a similar effect. The 5-sulfoxidation of perazine was accelerated by fluvoxamine and sertraline treatment, but the process was inhibited by administration of a combination of perazine and fluoxetine or fluvoxamine (vs control). Kinetic studies using control liver microsomes, in the absence or presence of SSRIs added in-vitro, demonstrated competitive inhibition of both N-demethylation and sulfoxidation by the investigated SSRIs. Sertraline was the most potent inhibitor of perazine N-demethylation but the weakest inhibitor of sulfoxidation. Results of in-vivo and in-vitro studies indicate that the observed interaction between perazine and SSRIs mainly involves competition for an active site of perazine N-demethylase and sulfoxidase. Moreover, increases in the concentrations of both perazine and metabolites measured, produced by the investigated drug combinations in-vivo, suggest simultaneous inhibition of another, yet to be investigated, metabolic pathway of perazine (e.g. aromatic hydroxylation).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.