Abstract

Across the great diversity of life, there are many compelling examples of parallel and convergent evolution-similar evolutionary changes arising in independently evolving populations. Parallel evolution is often taken to be strong evidence of adaptation occurring in populations that are highly constrained in their genetic variation. Theoretical models suggest a few potential factors driving the probability of parallel evolution, but experimental tests are needed. In this study, we quantify the degree of parallel evolution in 15 replicate populations of Pseudomonas fluorescens evolved in five different environments that varied in resource type and arrangement. We identified repeat changes across multiple levels of biological organization from phenotype, to gene, to nucleotide, and tested the impact of 1) selection environment, 2) the degree of adaptation, and 3) the degree of heterogeneity in the environment on the degree of parallel evolution at the gene-level. We saw, as expected, that parallel evolution occurred more often between populations evolved in the same environment; however, the extent of parallel evolution varied widely. The degree of adaptation did not significantly explain variation in the extent of parallelism in our system but number of available beneficial mutations correlated negatively with parallel evolution. In addition, degree of parallel evolution was significantly higher in populations evolved in a spatially structured, multiresource environment, suggesting that environmental heterogeneity may be an important factor constraining adaptation. Overall, our results stress the importance of environment in driving parallel evolutionary changes and point to a number of avenues for future work for understanding when evolution is predictable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call