Abstract

<p>The detailed study of rock response to cyclic loading induced by natural phenomena, such as seismic and volcanic activities, and man-made explosions and excavation is necessary for failure prediction and hazard mitigation. The effect of the maximum stress level, loading amplitude, and frequency of stress cycles on the fatigue life and failure mechanisms of two microstructurally different rocks of granite/granodiorite and sandstone is investigated. Test data obtained from comprehensive experiments conducted on these rock types incorporated with the results of previous studies show that the fatigue life time of both rock types increases with a decrease in either maximum stress level or stress amplitude. Nevertheless, the fatigue strength threshold of hard rocks like granite is generally lower than that of soft rocks like sandstone. The study also shows that the low-frequency cyclic loading has more damaging effect on both rock types than the high frequency loading. This investigation demonstrates that the failure mechanism of rocks under cyclic loading is characterized by the development of more tensile microcracks compared to the monotonic loading and the opening and extension of the axial tensile microfractures are more evident at higher maximum stresses or loading amplitudes or at lower loading frequencies. The results presented in this study will contribute to a deeper understanding of the fatigue responses of sandstone and granite to seismic-generated loading–unloading processes under different conditions of stress cycles.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.