Abstract

The effects of structural composition, particle size, leaching time, temperature, and liquid–solid ratio on the removal of phosphorus from metallurgical-grade silicon (MG-Si) by acid leaching were investigated. Two specimens with different phase constitutions were studied: crude metallurgical-grade silicon (C-MG-Si), which is reduced from electric arc furnace, with a high content of Al and Ca, and a secondary refined metallurgical-grade silicon (S-MG-Si) obtained after secondary refining in ladle. Using scanning electron microscopy-energy dispersive spectroscopy, the phosphorus-containing phase was only detected in the C-MG-Si grain boundaries. The Si2Al2Ca phase, which was soluble in HCl, showed an affinity for phosphorus, with up to 0.53 wt pct dissolved in this phase. The optimum conditions for acid leaching were grain size, 75-106 μm; leaching time, 6 hours; leaching temperature, 338 K (65 °C); liquid–solid ratio, 6:1; and HCl concentration, 4.0 mol L−1. Using these conditions, the mass fractions of P in C-MG-Si and S-MG-Si were reduced from 105 × 10−6 and 76 × 10−6 to 48 × 10−6 and 61 × 10−6, respectively, with removal efficiencies of 54.3 and 19.7 pct, respectively. Besides, the investigation suggested that adding HF was beneficial for the removal of most impurities. After 6 hours of leaching MG-Si with a mixture composed of 4.0 mol L−1 HCl and 3.0 mol L−1 HF, the purity of C-MG-Si and S-MG-Si were increased from 97.55 and 99.31 pct to 99.91 and 99.87 pct, respectively, with extraction efficiencies of 96.14 and 81.59 pct, respectively. The etching results reveal that the HCl-HF mixture was an effective lixiviant for dissolving impurity inclusions in both C-MG-Si and S-MG-Si.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.