Abstract

AbstractFour pedons of Arenic/Grossarenic Paleustalf (Denteso Series), in the Volta Lake drawdown area in Northern Ghana, were described and sampled just before seasonal floodings commenced in the area. After 5 years of periodic flooding the soils were re‐examined and sampled. Soil properties required for soil classification, including the clay mineralogy, of both the pre‐flooding and the post‐flooding samples were determined. One of the main objectives was to identify changes in soil properties which result from the periodic flooding.X‐ray diffraction (XRD) indicated that before flooding the main clay minerals of the Denteso were kaolinite and smectite, and there were also some mica and quartz in the total clay fraction. Comparison of the pre‐flooding with the post‐flooding data revealed that practically all the smectite disappeared from all the three sampled pedons that were flooded for 5 to 20 weeks during each flood cycle, while the smectite persisted in the non‐flooded pedon. With the disappearance of the 2 : 1 lattice clays there occurred a considerable decrease in cation exchange capacity (CEC) and in base saturation of the flooded pedons ranging from 0.04 to 3.63 cmol kg −1. Also, there was an increase in pH by 0.4 to 1 unit in most horizons of the flooded pedons in spite of the general decrease in base saturation. These changes in CEC, base saturation and pH support the XRD evidence that the seasonal floodings caused pedochemical weathering of the smectite in this loamy sand soil at a very fast rate during the 5 year period and this had resulted in the lowering of the buffering capacity and a general impoverishment of the soil series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.