Abstract

PurposeThe high energy emissions of 123I and the suboptimal radius of rotation affect the semiquantitative measurements performed during 123I-FP-CIT tomographic imaging. An in-house extra low cost striatum phantom with brain and striatum compartments was constructed and was used to study the effects of Triple Energy Window scatter correction (TEW-SC) and radius of rotation on the Specific Binding Ratio (SBR) measurements. Materials and methodsThe phantom compartments were filled with radioactive 123I solutions with varying concentrations, in a series of experiments. Tomographic images were acquired at six different radii of rotation, with and without TEW-SC and the SBRs were calculated using appropriate regions of interest, as in clinical imaging. ResultsSBRs decreased with increasing radius of rotation in both non-SC and TEW-SC images, the decrease being more pronounced in the latter. The application of TEW-SC increases SBR values by 40% on average. A maximum %Recovery of 42.7% of the true SBR value was achieved in the non-SC images, which increased to 64.6% after TEW-SC. Appropriate correction factors (CF) were calculated in order to make the SBR values independent on the radius of rotation, which could be used to correct SBR values obtained from tomographic acquisitions with suboptimal radius of rotation. ConclusionThe use of appropriate CF can provide more consistent SBR values and a more meaningful comparison between SBRs calculated from images acquired at different radii of rotation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call