Abstract

Abstract It has been shown that the fluctuations of pressure caused by a thermoacoustic instability can affect the mass flow rate of air and atomisation of the liquid fuel inside a gas turbine. Tests with premixed flames have confirmed that the fluctuations of the mass flow rate of air can affect the heat release rate through purely aerodynamic phenomenon but little work has been done to test the sensitivity of the heat release rate to changes in the fuel atomisation process. In this study, a lean-burn combustor geometry is supplied with a fuel spray fluctuation of SMD (Sauter mean diameter) of 20% with respect to the mean value and the heat release rate predicted using Large Eddy Simulation (LES) with combustion predicted using a presumed probability density function (PPDF), flamelet generated manifolds (FGM) method. Previous work has shown that at atmospheric conditions the SMD may fluctuate by up to 16% percent and at low frequencies may be reasonably well predicted by using a correlation based on the instantaneous velocity and mass flow rate of air close to the air-blast atomiser. Analysis of the flow fields highlights a complicated spray, flame and wall interaction as being responsible for this observed fluctuation of heat release rate. The heat release rate predicted by the LES shows a 20% fluctuation which implies that even small fluctuations of SMD will significantly contribute to thermoacoustic instabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.