Abstract

An alert cynomolgus macaque was fed a sweet solution to satiety as the activity of a gustatory neuron in the amygdala was recorded to that solution and to four other taste stimuli. This experiment was conducted a total of 14 times in two monkeys. The responses of individual neurons to the satiety stimuli were suppressed by as little as 1%, and as much as 100% by the induction of satiety (mean suppression = 58%). Nine of the 14 cells responded to the satiety solution with excitation, and their responses were suppressed by a mean of 62% by satiety. Five neurons responded with inhibition, and their responses were suppressed by a mean of 50%. Responses to other taste stimuli, not associated with satiety, were affected to a lesser extent. The amygdala is a taste relay between the primary gustatory cortex, where satiety has no influence on responses to taste stimuli, and the lateral hypothalamic area where the effect of satiety is total. The data presented here indicate that the amygdala is a functional as well as anatomical intermediary between these two areas, and serves as a stage in the process through which sensory stimuli are imbued with motivational significance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call