Abstract

Abstract Broadband dielectric dispersion measurements are attractive options for assessment of water-filled Dielectric permittivity is influenced by salinity as well as other rock/fluid properties. However, the effect of salinity on Maxwell-Wagner polarization (i.e., interfacial polarization) and dielectric permittivity in rock samples with complex pore structure requires further investigation. The objectives of this work are (a) to perform frequency domain dielectric permittivity numerical simulations on 3-dimensional (3D) pore-scale rock samples at different salt concentration levels, (b) to quantify the effect of salinity on dielectric permittivity and interfacial polarization in the frequency range between 20 MHz to 5 GHz, and (c) to quantify the frequency at which the interfacial polarization diminishes. We first perform pore-scale frequency domain dielectric permittivity simulations in fully water-saturated carbonate samples with complex pore structure to obtain the complex dielectric permittivity in the frequency range of 0.02-5 GHz and at different salinity levels. Next, we numerically create partially water/hydrocarbon-saturated water-wet samples and perform simulations at different salinity and water saturation levels to investigate the combined effect of salinity and water saturation on dielectric permittivity. Finally, we investigate how reliable conventional mixing models, such as Complex Refractive Index Model (CRIM) and Hanai-Bruggeman (HB), are in assessment of water saturation at different salinity levels. We used 3D pore-scale rock samples with complex pore structure from Austin Chalk, Estaillades Limestone, and Happy Spraberry formations. The increase in the salinity from 2 PPT to 50 PPT resulted in the dielectric constant to increase by 25% at 20 MHz. Similarly, an increase in salinity from 2 PPT to 50 PPT resulted in electrical conductivity to increase 10 times at 20 MHz. However, at 5 GHz the difference between the dielectric constants of the samples at different salinities was negligible. We demonstrated that the frequency at which the interfacial polarization becomes negligible is above 1 GHz. Thus, an accurate salinity assumption is required in the interpretation of conventional dielectric mixture models in carbonate formations. Finally, we observed 52% and 42% average relative errors in water saturation quantification when applying CRIM and HB models, respectively. The results also indicated that conventional models should not be used in the presence of uncertainty in salinity at lower frequencies. The results of this work quantified the frequency at which the water-filled pore volume rather than the Maxwell-Wagner polarization controls the dielectric constant of rock samples saturated with wide range of brine salinity. Moreover, results demonstrated that unlike the samples with relatively simple pore geometry (e.g., sandstone formations), the dielectric constant of the rock samples with complex pore structure may still be affected by the interfacial polarization even at 1 GHz. Moreover, the results suggested that the conventional mixture methods cannot reliably take into account salt concentration of formation water, and this can lead to significant errors in reserves assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call