Abstract

Mentha spicata L., Origanum dictamnus L., and Origanum onites L. are aromatic plants that produce very important essential oils. They are considered model plants with beneficial health properties due to their antioxidant content. Enhancing the yield while maintaining the quality of essential oil is of significant commercial importance. Salinization and drought cause various effects on the yield and quality of the bioactive constituents in essential oil. By assessing the response of these plants and their secondary metabolites accumulation to different salt stress and irrigation levels, this study aims to gain insights into how plants adapt to and cope with salinity and drought. A pot experiment was conducted in the spring of 2020 to assess the effect of salinity and drought stress on the growth and essential oils content of the three aromatic plant species mentioned above. The soil mixture used was perlite and peat in a ratio of 1:1:6, while four salinity treatments (25, 50, 100, and 150 mΜ NaCl) and two levels of irrigation were applied (100% and 50%). Salinity significantly affects total chlorophyll concentration especially in higher concentrations (100 and 150 mM) in M. spicata plants, especially under 50% soil water irrigation. Under the same conditions, M. spicata contained the higher proline concentration, which was significantly greater than that in O. dictamnus and O. onites. Similar variations of malondialdehyde and hydrogen hyperoxide were revealed among the three species, with significantly higher values in M. spicata when subjected to both excess salinity and drought conditions. The major compounds identified in M. spicata were carvone, in O. dictamnus carvacrol, and p-cymene and in O. onites carvacrol. It is important to highlight that O. onites had the highest concentration of essential oil, and that the concentration increased with the increase of NaCl. This suggests that the presence of NaCl in the soil may have a stimulating effect on the production of essential oil in O. onites. However, it is plausible that the stress caused by NaCl triggers a physiological response in O. onites, leading to increased production of essential oil. This could be a protective mechanism to enhance the plant’s resistance to the stressor. Overall, O. onites and O. dictamnus appeared to be more resistant to these stress conditions than M. spicata, since they maintained their growth and essential oil quality indicators at higher levels. These two species possess mechanisms that prevent or minimize lipid peroxidation, thus protecting their cell membranes and maintaining their ultrastructure integrity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call