Abstract
The runout of milling tools results in uneven effective tooth radii and affects the occurrence of tool wear in machining processes. The load and, thus, the specific wear of teeth with increased effective radii is higher. In processes with small undeformed chip thicknesses, e.g., the finishing of titanium alloys, the runout error could even be greater than the undeformed chip thickness. In this case, at least one cutting edge does not remove any material. In this paper, the influence of the runout on wear effects is analyzed for an exemplary finishing process using cutting force measurements and a geometric physically-based process simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.