Abstract
BackgroundHigh-intensity interval training (HIIT) has been proposed as a time-efficient exercise format to improve exercise adherence, thereby targeting the chronic disease burden associated with sedentary behaviour. Exercise mode (cycling, running), if self-selected, will likely affect the physiological and enjoyment responses to HIIT in sedentary individuals. Differences in physiological and enjoyment responses, associated with the mode of exercise, could potentially influence the uptake and continued adherence to HIIT. It was hypothesised that in young sedentary men, local and systemic oxygen utilisation and enjoyment would be higher during a session of running HIIT, compared to a session of cycling HIIT.MethodsA total of 12 sedentary men (mean ± SD; age 24 ± 3 years) completed three exercise sessions: a maximal incremental exercise test on a treadmill (MAX) followed by two experiment conditions, (1) free-paced cycling HIIT on a bicycle ergometer (HIITCYC) and (2) constant-paced running HIIT on a treadmill ergometer (HIITRUN). Deoxygenated haemoglobin (HHb) in the gastrocnemius (GN), the left vastus lateralis (LVL) and the right vastus lateralis (RVL) muscles, oxygen consumption (VO2), heart rate (HR), ratings of perceived exertion (RPE) and physical activity enjoyment (PACES) were measured during HIITCYC and HIITRUN.ResultsThere was a higher HHb in the LVL (p = 0.001) and RVL (p = 0.002) sites and a higher VO2 (p = 0.017) and HR (p < 0.001) during HIITCYC, compared to HIITRUN. RPE was higher (p < 0.001) and PACES lower (p = 0.032) during HIITCYC compared to HIITRUN.DiscussionIn sedentary individuals, free-paced cycling HIIT produces higher levels of physiological stress when compared to constant-paced running HIIT. Participants perceived running HIIT to be more enjoyable than cycling HIIT. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance.
Highlights
High-intensity interval training (HIIT) is broadly defined as repeated bouts of short to moderate duration exercise (10 s to 4 min) completed at a relatively high intensity, separated by periods of low-intensity exercise or passive rest (30 s to 5 min) (Billat, 2001; Buchheit & Laursen, 2013a, 2013b; Laursen & Jenkins, 2002)
While acute physiological responses linked to positive health and performance benefits are induced by bouts of either running and cycling HIIT (Kessler, Sisson & Short, 2012; Logan et al, 2014; Molmen-Hansen et al, 2012; Weston, Wisloff & Coombes, 2014; Whyte et al, 2013; Whyte, Gill & Cathcart, 2010), there is no scientific literature comparing the effects of these exercise modes on physiological responses during HIIT in the same cohort of sedentary individuals (Buchheit & Laursen, 2013a)
Experiment design The study consisted of three testing sessions: a maximal incremental exercise test conducted on a treadmill ergometer (MAX) followed by two experiment conditions: (1) a protocol of free-paced HIIT conducted on a bicycle ergometer (HIITCYC); and (2) a protocol of constant-paced HIIT conducted on a treadmill ergometer (HIITRUN)
Summary
High-intensity interval training (HIIT) is broadly defined as repeated bouts of short to moderate duration exercise (10 s to 4 min) completed at a relatively high intensity, separated by periods of low-intensity exercise or passive rest (30 s to 5 min) (Billat, 2001; Buchheit & Laursen, 2013a, 2013b; Laursen & Jenkins, 2002). This difference is due, in part, to how running and cycling ergometers are utilised to induce the requisite physiological stress inherent in the HIIT bouts and protocols (Ben Abderrahman et al, 2013; Weston et al, 2014) It is not known whether running elicits a greater cardiorespiratory response than cycling, in sedentary individuals, during short-duration HIIT protocols. The physiological responses, and benefits, elicited by running and cycling HIIT, as conducted in recreational exercise settings by unsupervised sedentary individuals, are expected to differ due to differences in the absolute workload able to be achieved (Abrantes et al, 2012), cardiorespiratory responses (Abrantes et al, 2012; Hill, Halcomb & Stevens, 2003; Scott et al, 2006), muscle activation (Bijker, de Groot & Hollander, 2002) and systemic oxygen utilisation (Carter et al, 2000) between these two modes of exercise. These findings have implications for selection of mode of HIIT for physical stress, exercise enjoyment and compliance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.