Abstract

The rate of icing in the wet growth conditions typical of ship icing and icing in freezing precipitation depends on the rate at which the heat liberated in the freezing process is transferred to the environment. A theoretical model for the heat transfer from the front half of a rough cylinder, based on boundary-layer theory, is described. Comparisons with empirical data show that the model simulates well the overall heat transfer rate from the front half of a cylinder with distributed roughness. The theory provides improved agreement between the results of a numerical icing model and icing wind tunnel tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.