Abstract

The study of the mechanical properties of aluminium–copper (Al–Cu) metal layered composite, formed by joining aluminium and copper sheets in the process of rolling have been presented in this paper. The influence of the rolling direction on the basic strength parameters and rheological properties of the composite was analysed. All tests were carried out on flat specimens cut from a sheet in the direction compatible with the rolling direction (RD) and transverse direction (TD). Preliminary tests of monotonic uniaxial tension at a temperature of 293K were carried out and the basic mechanical properties of Al–Cu bimetal were determined. The hardening process of the material was described by the three-parameter Swift’s equation. The essential creep tests were carried out at a temperature of 523K in the range of stress 88.5–137.9MPa. The relation between minimum creep rate and applied stress for the specimens cut from the RD and TD directions were determined. The relationships between the time to fracture, stress, and rupture elongation, obtained from the creep tests, were determined as well. Variations of the steady creep rate with time to fracture by using the Monkman–Grant’s model and its modifications were analysed. It was found that the rolling process strongly affected the short-time monotonic deformation at 293K and the creep process at 523K temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.