Abstract
Rhodamine B can be used as a fluorophore to produce fluorescent silica nanoparticles derived from geothermal sludge. The purpose of this research is to synthesize fluorescent silica nanoparticles (FSNP) modified with rhodamine B and cetyl trimethyl ammonium bromide (CTAB) using sol-gel method. Geothermal waste was used as a precursor and added with NaOH at 900C to generate sodium silicate. Rhodamine B, as the fluorescent dye were added with concentration variations ranging from 0.156 mg/g to 10 mg/g.CTAB was used as template and HCl 2N was applied as gelling catalyst with aging time of 18 hours. Characterization of FSNP was measured using spectrofluorometer to identify the fluorescent intensity, fourier transform infrared (FT-IR) to determine the functional group of FSNP, Brauner-Emmett-Teller (BET) adsorption to calculate the specific area of the particles, X-ray diffraction (XRD) to analyze the crystallographic phases, and transmission electron microscopy (TEM) to analyze the surface morphology of the FSNP. FT-IR and fluorescent intensity results showed that FSNP with 2.5 mg/g of rhodamine B had the optimum characteristics. The FSNP was in amorphous phase with uniform pore distribution. BET analysis showed that the specific surface of the FSNP was 190.22 m2/g.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Pure and Applied Chemistry Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.