Abstract

Antioxidants were found to protect against the genotoxic effects of chemical and physical mutagenic and clastogenic agents. This study focused on the capacity of antioxidants to reduce an intrinsic and persistent chromosome instability. As a model system, strains of C127 cells, which were transformed by bovine papillomavirus (BPV) DNA and which carry BPV DNA varying from 20 to 160 copies, were used. Transformed cells of 10 different strains showed a persistently high incidence of mitotic irregularities detectable at anaphase and telophase (27.3–58.9%), an elevated frequency of cells with micronuclei (6.6–34.7%), and a broad spectrum of nuclear sizes, as measured by image analysis. A 3-day exposure to retinoic acid, retinol, β-carotene, canthaxanthin, ascorbic acid and ellagic acid greatly reduced the degree of chromosome instability, whereas catechin, eugenol and pyrogallol showed a smaller inhibitory effect, and curcumin had no detectable effect on the frequency of mitotic irregularities. After withdrawal of retinoic acid treatment, the high levels of chromosome instability reappeared. The possibility that the protective effect of the retinoids and carotenoids examined in the model system points to their beneficial administration to human cells with an intrinsic or acquired chromosome instability is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call