Abstract

The impact of fractional wettability on the production characteristics of a VAPEX process at the macroscale was investigated. Conventional VAPEX experiments were conducted in a 220 Darcy random packing of glass beads in a rectangular physical model and n-pentane was used to recover the Cold Lake bitumen from the oil-saturated model in the absence of connate water. The composition of oil-wet beads in the packed bed was altered from completely water-wet beads to completely oil-wet beads at different proportions of oil-wet beads mixed with water-wet beads. A substantial increase (about 40%) in the production rate of live oil was observed during the VAPEX process when the wettability of the porous packing was entirely oil-wet beads. A critical oil-wet fraction of 0.66 was found for the heterogeneous packing of water-wet and oil-wet beads of similar size distribution. Above this critical composition, the live oil production rate was not affected by further increase in the proportion of the oil-wet beads. It is believed that above this critical composition of the oil-wet beads, the crevice flow process is dominated by the continuity of higher conductivity live oil films between particles through the oil-wet regions. Below this critical composition, the live oil production rate increased linearly with the fraction of the oil-wet beads in the packing. The oil-wet regions favor the live oil drainage compared to that of the water-wet regions as they enhance the rate of imbibition of the live oil from the oil-filled pores to the vacated pores near the nominal VAPEX interface. These two factors enhance the live oil production rate during the VAPEX process. The solvent content of the live oil, the solvent-to-oil ratio (SOR), and the residual oil saturation did not correlate strongly with the proportion of the oil-wet beads in the packing. The average solvent content of the live oil and the residual oil saturation were measured to be 48% by weight and 7% by volume respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call