Abstract

Subjective refraction is the gold-standard for prescribing refractive correction, but its accuracy is limited by patient’s subjective judgment about their clarity of vision. We asked if an involuntary eye movement, optokinetic nystagmus (OKN), could serve as an objective measure of visual-clarity, specifically measuring the dependence of OKN—elicited by drifting spatial-frequency filtered noise—on mean spherical equivalent (MSE) refractive error. In Experiment 1 we quantified OKN score—a measure of consistency with stimulus-direction—for participants with different MSEs. Estimates of MSE based on OKN scores correlate well with estimates of MSE made using autorefraction (r = 0.878, p < 0.001, Bland–Altman analysis: mean difference of 0.00D (95% limits of agreement: − 0.85 to + 0.85D). In Experiment 2, we quantified the relationship between OKN gain (ratio of tracking eye-movement velocity to stimulus velocity) and MSEs (− 2.00, − 1.00, − 0.50, 0.00 and + 1.00D) induced with contact lenses for each participant. The mean difference between measures of MSE based on autorefraction or on OKN gain was + 0.05D (− 0.90 to + 1.01D), and the correlation of these measures across participants was r = 0.976, p < 0.001. Results indicate that MSE attenuates OKN gain so that OKN can be used as an objective proxy for patient response to select the best corrective lens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.