Abstract

The complexes [(eta-C(5)Me(5))(ON)LMn(micro-CN)M(CO)(RC[triple bond, length as m-dash]CR)Tp'](+) (L = CNXyl, M = Mo; L = CNBu(t), M = Mo or W, R = Ph or Me) and trans- or cis-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-CN)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), and their linkage isomers [(eta-C(5)Me(5))(ON)LMn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) and trans- or cis-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), undergo two one-electron oxidations. The complexes [(eta-C(5)Me(5))(ON)LMn(micro-XY)M(CO)(RC[triple bond, length as m-dash]CR)Tp'](+) (XY = CN or NC) are oxidised first at the N-bound metal centre and then at the C-bound centre. For [(dppm){(EtO)(3)P}(OC)(2)Mn(micro-XY)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+), the trans isomers are first oxidised at manganese whereas the cis isomers are first oxidised at M. Thus, the order of one-electron oxidation of the two series of binuclear monocations is influenced by linkage isomerisation of the cyanide bridge and cis-trans isomerisation of the Mn(CO)(2) group. IR spectroscopic changes on reaction of Ag(+) with [(eta-C(5)Me(5))(ON)(Bu(t)NC)Mn(micro-CN)W(CO)(MeC[triple bond, length as m-dash]CMe)Tp'](+) are consistent with one-electron at the N-bound tungsten centre. Likewise, trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) (M = Mo or W) give the stable dications [(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)M(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](2+). Significantly longer Mn-P bond distances in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](2+) than in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) are consistent with one-electron oxidation first at Mn(I); the alignment of the (CN)Mn(CO)(2){P(OEt)(3)}(dppm) fragment relative to the alkyne in trans-[(dppm){(EtO)(3)P}(OC)(2)Mn(micro-NC)Mo(CO)(PhC[triple bond, length as m-dash]CPh)Tp'](+) suggests it acts as a pi-acceptor, in contrast to related species such as trans-(NC)Mn(CO)(2){P(OEt)(3)}(dppm) and (NC)Mn(NO){P(OPh)(3)}(pi-C(5)H(4)Me) which behave as simple N-donors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.