Abstract

In metal additive manufacturing (AM), powder bed fusion technologies such as selective laser melting and binder jetting rely on the spreading of fine metal powder to build up the layers of a part. This work studies the complex interaction between metal powder particles and the recoater. We apply the Discrete Element Method (DEM) to a calibrated cohesive Ti-6Al-4V powder model, matching the particle properties to experimental measurements of size, shape and inter-particle forces. We simulate powder bed fusion recoating at varying speeds and layer thicknesses with two different recoater geometries: a toothed rake and a solid blade. Our results demonstrate that the recoating mechanism induces significant granular convection, with the recoater velocity and geometry strongly influencing the degree of particle circulation and size segregation. Notably a toothed rake recoater improved particle circulation – while the solid blade recoater increases size segregation within the heap. Furthermore the recoater was found to filter fine and coarse particles, allowing smaller particles to flow underneath the recoater, and larger particles through its teeth. Our results demonstrate the key mechanisms which drive granular convection during recoating and how the fine details of recoater geometry impacts surface layer roughness and final part quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.