Abstract

This work evaluates the impact of the external resistance (electrical load) on the long-term performance of a microbial fuel cell (MFC) and demonstrates the real-time optimization of the external resistance. For this purpose, acetate-fed MFCs were operated at external resistances, which were above, below, or equal to the internal resistance of a corresponding MFC. A perturbation/observation algorithm was used for the real-time optimal selection of the external resistance. MFC operation at the optimal external resistance resulted in increased power output, improved Coulombic efficiency, and low methane production. Furthermore, the efficiency of the perturbation/observation algorithm for maximizing long-term MFC performance was confirmed by operating an MFC fed with synthetic wastewater for over 40 days. In this test an average Coulombic efficiency of 29% was achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.