Abstract

We have studied the effect of RE substitution on the structure and the local atomic disorder in REO0.5F0.5BiS2 (RE = rare-earth) to understand their correlation with the bulk superconductivity in these materials. The mean RE size, affecting the chemical pressure, has been varied in two series namely Ce1-xNdxO0.5F0.5BiS2 and Nd1-ySmyO0.5F0.5BiS2. The lattice parameters evolve anomalously, showing an anisotropic shrinkage (elongation) of the c-axis (a-axis) to an isotropic expansion of the lattice with increasing mean RE size. The Bi L3-edge extended X-ray absorption fine structure (EXAFS) measurements are performed to investigate local displacements in the BiS2 lattice, revealing a large disorder and a sharp boundary between the Ce-containing and Sm-containing series with a distinct local structure. The results suggest that the bulk superconductivity in REO0.5F0.5BiS2 is correlated with anomalous atomic displacements in the Bi-S1 network, likely to be a combined effect of active Bi 6s electronic states and a possible Jahn-Teller-like instability of the Bi 6px/6py electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.