Abstract
Abstract We report the effect of rank and lithotype on the wettability of artificial cleat channels in five coals from the Bowen Basin with ranks in the Rmax% range 0.98-1.91%. Wettability was assessed by measuring contact angles of air and water in the artificial cleats using a microfluidic Cleat Flow Cell (CFC) instrument. The artificial cleats were produced by reactive ion etching and had widths in the range 20–40 μm that replicate the width and shape of some natural coal cleats under sub-surface reservoir conditions. These model cleats were developed to allow systematic laboratory investigations of water and gas relative permeability behaviour. Imbibition and drainage experiments were performed in the artificial channels using air and 0.1 %wt. fluorescein in fresh tap water to observe contact angles, the entry pressure of the air-water and water-air interface to the channel, and the pressure at which the channel was filled by the displacing fluid. Relative contact angles on the coal surface of 110 -140° were determined from images collected in the imbibition experiments. A trend of increasing contact angle with coal rank was observed. The low rank coal exhibited smaller contact angles and lower breakthrough pressures than the higher rank coal samples. In the drainage experiments the injection air displaced the water but left a residual liquid film on cleat walls across dull, inertinite rich bands. This residual film was not observed in the bright, vitrinite rich bands. The results of this study may provide the basis to consider an improved relative permeability model that explicitly accounts for wettability and the effect of coal rank.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.