Abstract

Muscle contractions induced by functional electrical stimulation (FES) tend to result in rapid muscle fatigue, which greatly limits activities such as FES-assisted standing and walking. It was hypothesized that muscle fatigue caused by FES could be reduced by randomly modulating parameters of the electrical stimulus. Seven paraplegic subjects participated in this study. While subjects were seated, FES was applied to quadriceps and tibialis anterior muscles bilaterally using surface electrodes. The isometric force was measured, and the time for the force to drop by 3 dB (fatigue time) and the normalized force-time integral (FTI) were determined. Four different modes of FES were applied in random order: constant stimulation, randomized frequency (mean 40 Hz), randomized current amplitude, and randomized pulsewidth (mean 250 micros). In randomized trials, stimulation parameters were stochastically modulated every 100 ms in a range of +/-15% using a uniform probability distribution. There was no significant difference between the fatigue time measurements for the four modes of stimulation. There was also no significant difference in the FTI measurements. Therefore, our particular method of stochastic modulation of the stimulation parameters, which involved moderate (15%) variations updated every 100 ms and centered around 40 Hz, appeared to have no effect on muscle fatigue. There was a strong correlation between maximum force measurements and stimulation order, which was not apparent in the fatigue time or FTI measurements. It was concluded that a 10-min rest period between stimulation trials was insufficient to allow full recovery of muscle strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.