Abstract
For a valid split Hopkinson pressure bar (SHPB) or Kolsky compression bar experiment, the sample should be in dynamic stress equilibrium over most of the test duration. In this study, we investigate the effect of radial inertia on elastic samples during a valid SHPB test. We present closed-form equations for the three additional stress components induced by radial inertia for incompressible and compressible, linear elastic samples. These equations should assist in the early experimental designs. As the experiments proceed and more is learned about the sample response, numerical analysis can be used to obtain a more refined account of the sample response and dynamic material strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.