Abstract

In this work static pull-in instability and frequency analysis of circular and annular plates in electrical field was studied. The plate is modeled based on classical plate theory with nonlinear Von Karman strain-displacement field. The governing equation of motion and boundary conditions were obtained using Hamilton principle. For this purpose potential and kinetic energies and the work done by radial and electrostatic force are obtained. Governing partial differential equations were reduced to ordinary differential equations by Galerkin's method. Then, static pull-in instabilities of clamped circular plate and annular plate with clamped-clamped and clamped-simply boundary conditions were analyzed by arc-length continuation method. The effect of rigid core, radial load, geometric nonlinearity, inner radius and boundary conditions on pull-in instability and frequency of the plate has been studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.