Abstract
We investigate the effect of quenched bond disorder on the two-dimensional three-color Ashkin–Teller model, which undergoes a first-order phase transition in the absence of impurities. This is one of the simplest and striking models in which quantitative numerical simulations can be carried out to investigate emergent criticality due to disorder rounding of first-order transition. Utilizing extensive cluster Monte Carlo simulations on large lattice sizes of up to 128×128 spins, each of which is represented by three colors taking values ±1, we show that the rounding of the first-order phase transition is an emergent criticality. We further calculate the correlation length critical exponent, ν, and the magnetization critical exponent, β, from finite size scaling analysis. We find that the critical exponents, ν and β, change as the strength of disorder or the four-spin coupling varies, and we show that the critical exponents appear not to be in the Ising universality class. We know of no analytical approaches that can explain our non-perturbative results. However our results should inspire further work on this important problem, either numerical or analytical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.