Abstract

Nonorthogonal multiple access (NOMA) is a significant technology in radio resource sharing and it has been recognized as a favorable method in fifth-generation (5G) wireless networks to meet the requirements of system capacity, service latency, and user connectivity. Many schemes for NOMA have been proposed in the last few years. such as transmitter linear spreading-based NOMA as a code domain, as well as a linear minimum mean square error (LMMSE), parallel interference cancellation (PIC), and serial interference cancellation (SIC) with power allocation and grouping as a power domain at the receiver side for uplink NOMA. This work aims to evaluate the performance of multiple types of linear spreading-based NOMA schemes. Simulations are achieved for the error-rate performance evaluation of these NOMA schemes, received signal after detection, and received signal and effect of every user on the other. Evaluating the performance of these technologies with comparison is also achieved through using grouping and power allocation. Simulations are achieved for the sum rate and spectral efficiency. For the future, 5G NOMA development, an equiangular tight frame (ETF) is suggested for improving performance and suggests grouping with 64qam-quantized Grassmannian for improving performance favorite about grouping with Generalized welch-bound equality (GWBE)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.