Abstract
Pitch-based carbon fibers are of considerable interest as high-performance materials. There are reports over the last several decades detailing (i) methods of improving pitch-based carbon fiber performance, and (ii) reducing the cost of production via novel processing techniques. However, there remain considerable challenges in producing high-performance pitch-based carbon fibers consistently on an industrial scale. This is arguably due to the difficulty of scaling the melt-spinning process to compensate for variability in pitch feedstock quality and a lack of understanding of processing-structure-performance relationships. This work focuses on the early stages of heat treatment (pyrolysis) of isotropic pitch and its effect on the chemical, thermal, and rheological properties of the pitch, which help determine its processability. More specifically, we quantify significant changes in chemical structure, Mw, Tg, Ts, and shear and extensional rheology as a function of pyrolysis time at 400 °C. The extensional rheology, in particular, shows that the 'stretchability' of the pitch samples strongly depends on pyrolysis severity, and is important for characterizing 'drawability'. Using a novel analysis of the uniaxial stretching kinematics, we show an isothermal 'drawability window' that allows for the largest axial and radial Hencky strains at constant rate. We hypothesize that this extensional drawability window could facilitate the successful processing of pitch into high quality fiber, minimizing the trial-and-error approach currently used in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.