Abstract

Pulsatile flows are common in nature and in applications, but their stability and transition to turbulence are still poorly understood. Even in the simple case of pipe flow subject to harmonic pulsation, there is no consensus among experimental studies on whether pulsation delays or enhances transition. We here report direct numerical simulations of pulsatile pipe flow at low pulsation amplitude$A\leqslant 0.4$. We use a spatially localized impulsive disturbance to generate a single turbulent puff and track its dynamics as it travels downstream. The computed relaminarization statistics are in quantitative agreement with the experiments of Xuet al. (J. Fluid Mech., vol. 831, 2017, pp. 418–432) and support the conclusion that increasing the pulsation amplitude and lowering the frequency enhance the stability of the flow. In the high-frequency regime, the behaviour of steady pipe flow is recovered. In addition, we show that, when the pipe length does not permit the observation of a full cycle, a reduction of the transition threshold is observed. We obtain an equation quantifying this effect and compare it favourably with the measurements of Stettler & Hussain (J. Fluid Mech., vol. 170, 1986, pp. 169–197). Our results resolve previous discrepancies, which are due to different pipe lengths, perturbation methods and criteria chosen to quantify transition in experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.