Abstract
Carbon nanotubes (CNT) are one of the most promising nanomaterials for use in medicine. The blood biocompatibility of CNT is a critical safety issue. In the bloodstream, proteins bind to CNT through non-covalent interactions to form a protein corona, thereby largely defining the biological properties of the CNT. Here, we characterize the interactions of carboxylated-multiwalled carbon nanotubes (CNTCOOH) with common human proteins and investigate the effect of the different protein coronas on the interaction of CNTCOOH with human blood platelets (PLT). Molecular modeling and different photophysical techniques were employed to characterize the binding of albumin (HSA), fibrinogen (FBG), γ-globulins (IgG) and histone H1 (H1) on CNTCOOH. We found that the identity of protein forming the corona greatly affects the outcome of CNTCOOH's interaction with blood PLT. Bare CNTCOOH-induced PLT aggregation and the release of platelet membrane microparticles (PMP). HSA corona attenuated the PLT aggregating activity of CNTCOOH, while FBG caused the agglomeration of CNTCOOH nanomaterial, thereby diminishing the effect of CNTCOOH on PLT. In contrast, the IgG corona caused PLT fragmentation, and the H1 corona induced a strong PLT aggregation, thus potentiating the release of PMP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.