Abstract

The present study examined the influence of chrome-aluminide coatings on the creep and stress rupture properties of a wrought Udimet-520 nickel-base superalloy used in gas turbine blade applications. Creep and stress rupture tests were conducted at 802 °C (1475 °F) on coated and uncoated wrought bars in the fully heat treated condition. The tests showed that the application of the chrome-aluminide coatings caused a marked deterioration in rupture strength and ductility. Masking procedures used to protect the turbine blade roots during coating of the Ni-base superalloy also affected the rupture strength or rupture ductility. The mechanical behavior in the coated creep resistant alloy was correlated with the microstructure and is discussed in terms of possible controlling processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call