Abstract

Dexamethasone (DEX) induces intrauterine growth restriction (IUGR)in pregnant rats. IUGR can occur due to apoptosis of trophoblasts, which is believed to be inhibited by progesterone (P4). A group of genes called MTAs play a role in proliferation and apoptosis. MTA1 upregulates trophoblasts proliferation and differentiation, while MTA3 downregulates proliferation and induces apoptosis. Hence, we hypothesized that during IUGR, placental MTA1 decreases and MTA3 increases and this is reversed by P4 treatment. Pregnant Sprague-Dawley rats were divided into 4 groups based on daily intraperitoneal injections: control (C, saline), DEX (DEX, 0.2mg/kg/day), DEX and P4 (DEX + P4, DEX: 0.2mg/kg/day, P4: 5mg/kg/day) and P4-treated (P4, 5mg/kg/day) groups. Injections were started on 15 dg until the day of dissection (19 or 21 dg). Gene and protein expressions of MTA1 and MTA3 were studied in the labyrinth (LZ) and basal (BZ) zones using real-time PCR and Western blotting, respectively. DEX treatment induced 18% reduction in fetal body weight (p < 0.001) and 30% reduction in placental weight (p < 0.01). Maternal P4 level was also significantly lower in DEX treated groups (p < 0.05). MTA1 expression was decreased in the LZ (gene, p < 0.001) and BZ (protein p < 0.01), while MTA3 protein expression was upregulated in the LZ with DEX treatment (p < 0.001). These changes were reversed with P4 treatment. The findings of the present study indicate that DEX induces IUGR through changing the expression of placental MTA1 and MTA3 antigens and P4 improved pregnancy outcome by preventing the changes in MTAs expression.

Highlights

  • Intrauterine growth restriction (IUGR) is used to describe fetal outcomes that fail to reach the full growth potential

  • DEX treatment induced 18% reduction in fetal body weight (p

  • MTA1 expression was decreased in the LZ and BZ, while MTA3 protein expression was upregulated in the LZ with DEX treatment (p

Read more

Summary

Background

Dexamethasone (DEX) induces intrauterine growth restriction (IUGR) in pregnant rats. IUGR can occur due to apoptosis of trophoblasts, which is believed to be inhibited by progesterone (P4). A group of genes called MTAs play a role in proliferation and apoptosis. MTA1 upregulates trophoblasts proliferation and differentiation, while MTA3 downregulates proliferation and induces apoptosis. We hypothesized that during IUGR, placental MTA1 decreases and MTA3 increases and this is reversed by P4 treatment

Methods
Results
Introduction
Discussion
Code availability
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.