Abstract

AbstractThe viscoelastic responses of some molten polymers, and particularly of low density polyethylene (LDPE), are known to vary with processing history. Reasons for the variations include the effects of shear history on morphological states of the polymer, or on its molecular weight parameters. A typical low density polyethylene has been used to test the shear‐history dependence concept following a variety of processing steps. The polymer was sheared in single‐screw and twin‐screw extruders, and in a high speed melter / mixer (Gelimat). Samples also were precipitated from very dilute solutions in trichlorobenzene and in p‐xylene. GPC analyses showed that, in general, these procedures did not affect the various moments of molecular weight. An exception was the Gelimat‐mixed sample, for which mild reductions in Mn and Mw were noted. In contrast, melt viscosity and elasticity readings, the former from low shear evaluations and the latter from extrudate swelling, were affected by the various procedures. A drop in melt viscosity and in elasticity was observed, being most pronounced for precipitated and twin‐screw extruded versions of the LDPE. Reductions also were observed in the specimen sheared in the Gelimat instrument. Following conditioning at the test extrusion temperature (170°C), viscous and elastic responses tended to revert to those of the unsheared control sample, the exception again being the sample sheared in the Gelimat melter / mixer. Of the various mechanisms proposed in the literature to account for transient property changes such as those reported, temporary changes in the degree of chain entanglement appear the most satisfactory explanation. Irreversible alterations in viscoelastic properties may be associated with changes in molecular weights due to processing at high shear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.