Abstract

Structures capable of absorbing large amounts of energy are of great interest, particularly in the automotive and aviation industries, in an effort to reduce the impact on passengers in the case of a collision. The energy absorption properties of composite materials can be tailored, thus making them an appealing option as a substitute of more traditional materials in applications where energy absorption is crucial. In this research, the effect of the processing conditions (with or without vacuum) on the specific energy absorption capacity of composite tubes was investigated. Tubes of circular and square cross sections were fabricated using orthophthalic polyester resin and plain weave E-glass fabric with fibers oriented at 0°/90°, with respect to the tube axis. Test specimens consisting of tube segments were prepared and tested under quasi-static compression load. Test results indicate that, among the conditions considered, tubes of circular cross section fabricated under applied vacuum display the highest level of specific energy absorbed. Ultimately, this investigation demonstrates the potential for tailoring the energy absorption properties of composite materials through controlled processing conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call