Abstract
Polyethylene/organo-montmorillonite clay (org-MMT) nanocomposites were prepared utilizing PP-g-MA as a compatibilizer by melt intercalation method. In order to increase the miscibility of polyethylene (PE) with nanoparticle surface at firs, a primary masterbatch consist of compatibilizer and org-MMT was prepared then, this compound was melt intercalated with PE to synthesis the PE/org-MMT nanocomposites. In this study, the presence of commercial low density polyethylene in Nanocomposites structure and also the effect of process parameters such as: amount of nanoparticles, mixing rate and mixing time on nanocomposite structure and properties have been investigated. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that the interlayer distance of nanoparticle layers increased and a partially intercalated structure was prepared by melt intercalation method. Interaction between polyethylene chains and nanoparticle layers could be improved if the control of above parameters causes to penetrate the chains into nanoclay layers; by an optimization, this effect could improve the physical and mechanical properties. The DSC data revealed that melting temperature has slowly increased and crystalinity has lightly decreased. Consequently we can claim the thermal properties of LDPE/clay nanocomposite did not considerably change with clay content. A rise in the mechanical properties such as yield stress and modulus was observed by tension test; by addition of 5% clay content the tensile strength increased about 7%, the tensile modulus enhanced about 60% and the yield stress increased about 16% in comparison with the pure LDPE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.