Abstract

The direct CO2 hydrogenation to methanol is an attractive route to actively remove CO2 and to promote sustainable development. Herein, the performance of Cu-Zn-Mn catalyst supported on mesoporous silica KIT-6 (hereafter, CZM/KIT-6) for methanol synthesis by direct CO2 hydrogenation reaction was investigated by varying the process parameters, which included the weight-hourly space velocity, reaction temperature and reaction pressure. The CO2 conversion was found to decrease with the increase of WHSV. On the other hand, CO2 conversion increased with reaction temperature and pressure. Meanwhile, the methanol selectivity increased with WHSV and reaction pressure but decreased with the increase of reaction temperature. The apparent activation energy of methanol production at low reaction temperature (160 - 220 °C) was 10 kcal/mol. Non-Arrhenius behaviour of methanol formation was observed at high reaction temperature (220 - 260 °C). The performance of CZM/KIT-6 was maintained at high level, with the average methanol yield of 24.4 %, throughout the stability experiment (120-hour time-on-stream). In post-reaction XRD analysis, the copper crystallite growth was found to be 53.5 %, thus, resulting in 35.3 % loss of copper surface area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call