Abstract
Product quality in high-shear granulation is easily compromised by minor changes in raw material properties or process conditions. It is desired to develop a process analytical technology (PAT) that can monitor the process in real-time and provide feedback for quality control. In this work, the application of audible acoustic emissions (AAEs) as a PAT tool was investigated. A condenser microphone was placed at the top of the air exhaust on a PMA-10 high-shear granulator to collect AAEs for a design of experiment (DOE) varying impeller speed, total binder volume and spray rate. The results showed the 10 Hz total power spectral densities (TPSDs) between 20 and 250 Hz were significantly affected by the changes in process conditions. Impeller speed and spray rate were shown to have statistically significant effects on granulation wetting, and impeller speed and total binder volume were significant in terms of process end-point. The DOE results were confirmed by a multivariate PLS model of the TPSDs. The scores plot showed separation based on impeller speed in the first component and spray rate in the second component. The findings support the use of AAEs to monitor changes in process conditions in real-time and achieve consistent product quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.