Abstract
The microelectrode technique of intracellular constant current application and intracellular transmembrane voltage recording was used to study the effects of procaine amide (PA) on cardiac excitability. We measured the effect of PA in a concentration equivalent to clinically effective antiarrhythmic plasma levels (5 mug/ml), on nonnormalized and normalized strength-duration and charge-duration curves, membrane characteristics, and cable properties in long sheep Purkinje fibers in normal Tyrode's solution with [K+]0 = 4.0 mM. PA exerted a complex action and influenced passive resistance-capacitance (RC) and active generator properties by decreasing membrane conductance, primarily membrane sodium conductance. Whether PA increased or decreased excitability depended on the relative contribution of the drug-induced alterations in passive and active membrane properties. These findings may explain, in part, the conflicting results of studies on cardiac excitability in the whole animal, as well as the clinical observation that PA may exert both artiarrhythmic and arrhythmogenic effects. The primary mechanism by which PA modifies excitability would seem to differ considerably from that of the structurally similar local anesthetic agent lidocaine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.