Abstract

BackgroundTo further understand the implementation of hyperparameters re-estimation technique in Bayesian hierarchical model, we added two more prior assumptions over the weight in BayesPI, namely Laplace prior and Cauchy prior, by using the evidence approximation method. In addition, we divided hyperparameter (regularization constants α of the model) into multiple distinct classes based on either the structure of the neural networks or the property of the weights.ResultsThe newly implemented BayesPI was tested on both synthetic and real ChIP-based high-throughput datasets to identify the corresponding protein binding energy matrices. The results obtained were encouraging: 1) there was a minor effect on the quality of predictions when prior assumptions over the weights were altered (e.g. the prior probability distributions to the weights and the number of classes to the hyperparameters) in BayesPI; 2) however, there was a significant impact on the computational speed when tuning the weight prior in the model: for example, BayesPI with a Laplace weight prior achieved the best performance with regard to both the computational speed and the prediction accuracy.ConclusionsFrom this study, we learned that it is absolutely necessary to try different prior assumptions over the weights in Bayesian hierarchical model to design an efficient learning algorithm, though the quality of the final results may not be associated with such changes. In future, the evidence approximation method can be an alternative to Monte Carlo methods for computational implementation of Bayesian hierarchical model.

Highlights

  • To further understand the implementation of hyperparameters re-estimation technique in Bayesian hierarchical model, we added two more prior assumptions over the weight in BayesPI, namely Laplace prior and Cauchy prior, by using the evidence approximation method

  • Three motivations inspired us to pursue an investigation on the effect of prior assumptions over the weights in Bayesian neural networks to study protein-DNA interactions from ChIPbased high-throughput data: 1) With regard to others’ concern, before BayesPI paper was published, we received some criticisms about the treatment of hyperparameters in Bayesian neural networks

  • Do alternative definitions of hyperparameters according to the model parameters strongly influence the model inference? 2) With regard to our own interest, how significant will a different assignment of prior distribution (e.g. Gaussian prior, Laplace prior or Cauchy prior) to weights affect the outcome of Bayesian neural networks? 3) With respect to a general survey of the application of Bayesian inferences in ChIP-based experiments, we searched PubMed using the keywords “Bayesian, chip” or “Bayesian, ChIP-chip,” and downloaded the search results that had been recorded before May 28, 2010

Read more

Summary

Introduction

To further understand the implementation of hyperparameters re-estimation technique in Bayesian hierarchical model, we added two more prior assumptions over the weight in BayesPI, namely Laplace prior and Cauchy prior, by using the evidence approximation method. Three motivations inspired us to pursue an investigation on the effect of prior assumptions over the weights (the evidence approximation) in Bayesian neural networks to study protein-DNA interactions from ChIPbased high-throughput data: 1) With regard to others’ concern, before BayesPI paper was published, we received some criticisms about the treatment of hyperparameters in Bayesian neural networks. A detailed examination of the 14 papers relevant to protein-DNA interaction study reveal that BayesPI applied used evidence approximation to solve the posterior distribution in Bayesian inference, while the remaining 12 papers utilized the sampling methods (e.g. MCMC and Gibbs sampling) to simulate the posterior distribution of the Bayesian models (one paper cannot be determined because of lack of method description; detailed information of the 33 papers is available in [Additional file 1: Supplemental Data]). Our study may pave the way for the future development of evidence approximation in Bayesian inferences as well as for the further application of the Bayesian methods in bioinformatics research

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call