Abstract

In order to investigate the effect of principal stress orientation on the stability of regular tunnels and cracked tunnels, experiments by using square specimens with a centralized small tunnel were conducted, and the corresponding numerical study as well as photoelastic study were implemented. Two kinds of materials, cement mortar and sandstone, were used to make tunnel models, and three types of tunnel models were studied, i.e. (1) regular tunnel models loaded by different orientation’s principal stresses, (2) tunnel models with various orientation’s radial cracks in the spandrel under compression, and (3) tunnel models with a fixed radial crack loaded by various orientation’s principal stresses. In the numerical study, the stress intensity factors of the radial cracks were calculated, and the results agree well with the test results. For regular tunnels, when the angle θ between the major principal stress and the tunnel symmetrical axis is 45°, the corresponding tunnel is the most unfavorable; for tunnels with a radial crack in the spandrel, when the angle β between the crack and the tunnel wall is 135°, the corresponding tunnel is the most unfavorable; for tunnels with a β=130° radial crack, when θ=0° or θ=70°, the compressive strengths of the tunnel models are comparatively low, whereas when θ=90°, it is the highest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.