Abstract

To clarify the inner framework and relative properties in vitro of Lyotropic liquid crystal (LLC) based on various prescriptions by using hydrophilic sinomenine hydrochloride (SH) and lipophilic cinnamaldehyde (CA) as model drugs. Phase structures were checked by polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). Rheological studies and Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) analysis were carried out to reveal their molecular interactions. In vitro release and skin permeation were conducted by Franz diffusion cell. PLM and SAXS showed double diamond cubic crystal. All the samples displayed characteristics of non-Newtonian fluid, and the molecular interactions increased with the reducing water. ATRFTIR showed that the strongest strength of hydrogen bond emerged in the formulation with 32% water. Released SH of S2 and S3 arrived over 80%, while S1 only reached 45%, and that of CA was about 23%. Water-rich prescription gave higher percutaneous penetration for hydrophilic drugs, whereas no significant difference existed in CA permeation. Proportion of Phytantriol to water determined the LLC assembling and affected the dissolving status of hydrophilic substance, thereby impacting on the location sites of guest molecular interactions among the substances, rheology properties, and finally the release and penetration behavior in vitro. Adjusting the basic prescription was the key to obtain satisfactory percutaneous delivery and stability for LLC carrying multi-therapeutic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call