Abstract

It is unclear what the contribution of prenatal versus childhood development is for adult cognitive and sensory function and age-related decline in function. We examined hearing, vision and cognitive function in adulthood according to self-reported birth weight (an index of prenatal development) and adult height (an index of early childhood development). Subsets (N = 37,505 to 433,390) of the UK Biobank resource were analysed according to visual and hearing acuity, reaction time and fluid IQ. Sensory and cognitive performance was reassessed after ~4 years (N = 2,438 to 17,659). In statistical modelling including age, sex, socioeconomic status, educational level, smoking, maternal smoking and comorbid disease, adult height was positively associated with sensory and cognitive function (partial correlations; pr 0.05 to 0.12, p < 0.001). Within the normal range of birth weight (10th to 90th percentile), there was a positive association between birth weight and sensory and cognitive function (pr 0.06 to 0.14, p < 0.001). Neither adult height nor birth weight was associated with change in sensory or cognitive function. These results suggest that adverse prenatal and childhood experiences are a risk for poorer sensory and cognitive function and earlier development of sensory and cognitive impairment in adulthood. This finding could have significant implications for preventing sensory and cognitive impairment in older age.

Highlights

  • Prenatal and early childhood development have a critical effect on long-term health in adulthood [1]

  • We examined hearing, vision and cognitive function in middle age according to birth weight and adult height in a very large sample of middle aged people, thereby increasing power for detecting small effects later in life

  • In statistical models that included age, sex, socioeconomic status, educational level, diabetes, cardiovascular disease, hypertension, high cholesterol, smoking status and maternal smoking, adult height was linearly related to hearing, vision and cognitive function in middle age, with taller adults having better function

Read more

Summary

Introduction

Prenatal and early childhood development have a critical effect on long-term health in adulthood [1]. Development may affect adult susceptibility to a range of non-communicable disease including cardiovascular disease [2] and diabetes [3]. The aim of this study was to PLOS ONE | DOI:10.1371/journal.pone.0136590. Used indexes of prenatal development include birth weight and other measures of body size at birth. Measures of body size at birth represent an indirect, summative measure of influences on the developing foetus [4]. In contrast to measures of body size at birth (an index of prenatal exposure), measures of adult leg length and height are sensitive to environmental factors and nutrition in early childhood that impact on growth [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call