Abstract

Previous studies demonstrated that crystals of uric acid (UA) and sodium urate (NaU) can induce the precipitation of calcium oxalate (CaOx) from its inorganic metastable solutions, but similar effects have not been unequivocally shown to occur in urine. The aim of this investigation was to determine whether preincubation of these seeds with urine alter their ability to induce deposition of CaOx from solution and thus provide a possible explanation for discrepancy of results obtained from aqueous inorganic solutions and undiluted urine. The effects of commercial seed crystals of UA, NaU and CaOx (6 mg/100 ml) on CaOx crystallization were compared in a solution with the same crystals that had been preincubated for 3 hours with healthy male urine. A Coulter Counter was used to follow the crystallization and decrease in soluble (14) C-oxalate was measured to determine the deposition of CaOx. The precipitated particles were examined by scanning electron microscopy (SEM). The preincubated seeds were demineralized and proteins released were analyzed by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Analysis of (14) C-oxalate data revealed that while treated UA seeds did not affect CaOx deposition, those of NaU and CaOx inhibited the process by 51.9 (p<0.05) and 8.5% (p<0.05) relative to their respective untreated counterparts. Particle size analysis showed that the average modal sizes of particles precipitated in the presence of treated seed crystals of UA, NaU, and CaOx were very similar to those deposited in the presence of their respective untreated controls. These findings were confirmed by SEM which also showed that seed crystals of UA and NaU, untreated and treated, were attached like barnacles upon the surfaces of CaOx crystals which themselves were bigger than those precipitated in the presence of CaOx seeds. SDS-PAGE analysis of the demineralized treated seeds showed that they all selectively adsorbed urinary proteins, and perhaps other urinary macromolecules and low molecular weight components, on their surface. It was concluded that preincubation with urine, such as occurs in vivo, only slightly reduces the ability of seed crystals of CaOx, but not of UA, to cause deposition of CaOx. The most striking effect was on NaU seeds where the preincubation quite dramatically attenuated their promotory effect on the mineral deposition. This may explain the discrepancy between findings of studies carried out in inorganic solutions and undiluted human urine. This stresses the invalidity of directly extrapolating results obtained in inorganic solutions to likely effects in urine and more importantly, on stone formation.

Highlights

  • Hyperuricosuria has long been documented as a predisposing factor to calcium oxalate (CaOx) stone formation

  • Several features of the data are noteworthy: 1) Treated or untreated, the average total particle volumes of ϳ13,000–15,000 ␮m3/␮l of NaU and CaOx seed crystals were significantly smaller than the corresponding value of ϳ21,000 ␮m3/␮l obtained with uric acid (UA) seeds

  • 3) Treated or untreated, the average modal particle sizes of 2.9–3.5 ␮m of NaU and CaOx seed crystals were significantly smaller than the corresponding value of ϳ8.1 ␮m obtained with UA seeds

Read more

Summary

Introduction

Hyperuricosuria has long been documented as a predisposing factor to calcium oxalate (CaOx) stone formation. Previous studies demonstrated that crystals of uric acid (UA) and sodium urate (NaU) can induce the precipitation of calcium oxalate (CaOx) from its inorganic metastable solutions, but similar effects have not been unequivocally shown to occur in urine. The aim of this investigation was to determine whether preincubation of these seeds with urine alter their ability to induce deposition of CaOx from solution and provide a possible explanation for discrepancy of results obtained from aqueous inorganic solutions and undiluted urine. This stresses the invalidity of directly extrapolating results obtained in inorganic solutions to likely effects in urine and more importantly, on stone formation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.