Abstract

Assays that account for the biological properties and fragmentation of cell-free DNA (cfDNA) can improve the performance of liquid biopsy. However, preanalytic and physiological differences between individuals on fragmentomic analysis are poorly defined. We analyzed the impact of collection tube, plasma processing time, and physiology on the size distribution of cfDNA, their genome-wide representation, and sequence diversity at the cfDNA fragment ends using shallow whole-genome sequencing. Neither different stabilizing collection tubes nor processing times affected the cfDNA fragment sizes, but could impact the genome-wide fragmentation patterns and fragment-end sequences of cfDNA. In addition, beyond differences depending on the gender, the physiological conditions tested between 63 individuals (age, body mass index, use of medication, and chronic conditions) minimally influenced the outcome of fragmentomic methods. Fragmentomic approaches have potential for implementation in the clinic, pending clear traceability of analytical and physiological factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.