Abstract

Spinal wide dynamic range (WDR) neurons are well studied in pain models and they play critical roles in regulating nociception. Evidence has started to accumulate that acupuncture produces a good analgesic effect via activating different primary fibers with distinct intensities. The purpose of the present study was to compare the distinct intensities of pre-electroacupuncture (pre-EA) at local muscular receptive fields (RFs), adjacent or contralateral non-RFs regulating the nociceptive discharges of spinal WDR neurons evoked by hypertonic saline (HS). Spinal segments of electrophysiological recording were identified by neural tracers applied at the left gastrocnemius muscle. The thresholds of Aβ (TAβ), Aδ (TAδ) and C (TC) components of WDR neurons were measured to determine the intensity of pre-EA by extracellular recording. The discharges of WDR neurons induced by distinct intensities of pre-EA and 200 µL HS (6%) injection in left gastrocnemius muscle of rats were observed by extracellular recording. The spinal segments of WDR neurons were confirmed in lumbar (L)5-6 area according to the projective segments of dorsal root ganglion. TAβ, TAδ and TC of WDR neurons was determined to be 0.5, 1, and 2 mA, respectively. The pre-EA with intensities of TAβ (P < 0.05), TAδ (P < 0.05), TC (P < 0.05) or 2TC (P < 0.01) at ipsilateral adjacent non-RFs significantly reduced the discharges of WDR neurons, while at local RFs only pre-EA of TAδ (P < 0.05), TC (P < 0.05) and 2TC (P < 0.01) could inhibit the nociceptive discharges. In addition, intensity of pre-EA at contralateral non-RFs should reach at least TC to effectively inhibit the firing rates of WDR neurons (P < 0.01). Pre-EA could suppress nociceptive discharges of WDR neurons and the inhibitory effects were dependent on the distinct intensities and locations of stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.