Abstract

It has previously been shown that an Ag/CZA catalyst can simultaneously remove NOx and soot from an oxygen-rich exhaust gas at low temperatures, by utilising the N2O generated preferentially during incomplete NOx reduction. Here, we examine the effect of reformulating the catalyst to include potassium, which is a known promoter of soot combustion. On including 2 wt% K, NOx-reduction occurs both in the absence and presence of soot, but the N2O formed does not play a part in the oxidation of soot. At higher K loadings (5, 10 and 15 wt%), NOx reduction is almost completely disabled, and only contributes to the activity of the catalyst containing 5 wt% K when tested in the presence of soot. At a loading of 20 wt% K, the potassium phase segregates, leaving NO and NH3 adsorption sites exposed. In the absence of soot, this catalyst can remove NOx by reduction on the Ag/CZA component and through nitration of the potassium phase. Although the presence of potassium lowers the onset temperature for soot oxidation to within the range of NOx reduction over Ag/CZA, the mobile K species prevents the desirable C+N2O reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.